

V-BOR[®] Pentahydrate Borax

Technical Information Bulletin 5500

Brand Name:	THREE ELEPHANT [®] V-BOR [®] Refined Pentahydrate Borax			
Chemical Name:	Sodium tetraborate pentahydrate			
Also known as:	Borax pentahydrate, sodium biborate pentahydrate			
Formula:	$Na_2B_4O_7 \cdot 5H_2O$			
Molecular Weight:	291.29			
CAS/TSCA No.:	12179-04-3 /1330-43-4 REACH: 01-2119490790-32-0001			
Description:	White, granular, crystalline solid.			
Grades:	Technical (Standard)			

If you require guidance in developing product specifications, please contact Quality Assurance at qaclerk@svminerals.com

Chemical Analysis	Specification		Physical Analysis	Specification
	Minimum	Maximum	U.S. Standard Sieve No.	(% cum. retained)
Pentahydrate Borax (Na ₂ B ₄ O ₇ •5H ₂ O)	101.5 %	103.5 %	+12	2 % max
Anhydrous Borax (Na ₂ B ₄ O ₇)	70.1 %	71.5 %		
Boric Oxide (B ₂ O ₃)	48.5 %	49.5 %		
Sodium Oxide (Na ₂ O)	21.6 %	22.0 %		
Nater of Crystallization (H ₂ O)	28.5 %	29.9 %		
Chloride (Cl)		600 ppm		
Sulfate (<i>as</i> Na ₂ SO ₄)		300 ppm		
ron (Fe)		15 ppm		

ckaging	Handling		
25 kg	Information concerning the handling and use of this		
25 kg	product is provided in a safety data sheet (SDS). The		
2,000 lb and 1,000 kg	SDS must be fully read and understood prior to any		
Truck and hopper cars	exposure, handling, or use of the product.		
	25 kg 25 kg 2,000 lb and 1,000 kg		

The information herein is believed to be reliable. However, no warranty, expressed or implied, is made as to its accuracy or completeness and none is made as to **MERCHANTABILITY** of the material or its **FITNESS FOR ANY PURPOSE**. The manufacturer shall not be liable for consequential damages or for damage to persons or property resulting from its use. Nothing herein shall be construed as a recommendation for use in violation of any patent.

SVM's QMS is Certified to ISO 9001:2015

Theoretical Properties

The following properties are textbook theoretical data and are provided for convenience and reference only. These properties are not normally tested for the commercial product and no representation is made relative to the commercial product.

Theoretical Composition	
Sodium ovido	(N

Sodium oxide	(Na ₂ O)	21.28 %
Boric oxide	(B ₂ O ₃)	47.80 %
Water of crystallization	(H ₂ O)	30.92 %
Anhydrous borax	(Na ₂ B ₄ O ₇)	69.08 %
•		

Melting Point

When heated in a closed tube, V-BOR[®] begins to melt in its own water of crystallization at 128°C (262°F) and is completely fluid at 140°C. Heated in the open, V-BOR[®] loses its water of crystallization to complete hydration and fusion at 742.5°C (1367°F).

Specific Gravity @ 25°C

1.815

Specific Heat @ 25°C

96.3 cal/deg-mol

Heat of Solution (absorbed) @ 25°C

-13.03 Kcal/g-mol or -51.71 Btu

Heat of Formation @ 25°C

-1147.8 Kcal/g-mol or -4555.0 Btu

Heat of Hydration

-21.4 Kcal/g-mol or -84.9 Btu

Other Information

V-BOR[®] contains only one-half the water content of decahydrate borax. Except for the difference in water of hydration, V-BOR[®] is chemically identical to decahydrate borax and can be directly substituted for borax in fusion or solution applications. One weight unit of borax is equivalent to 0.764 weight units of V-BOR[®]. At equivalent concentrations of the active ingredient, sodium tetraborate, the properties of solutions or fusion products are chemically and physically identical.

V-BOR[®], a more concentrated form of borax can result in savings in transportation, handling and storage. Because 100 units of decahydrate borax can be replaced by 76.4 units of V-BOR[®], freight and other costs can be reduced approximately 25 percent.

Where V-BOR[®], is substitued for decahydrate borax in dry mixtures, allowance should be made for differences in volumes and weight.

Solubility in Water as Na₂B₄O₇·5H₂O (V-BOR[®])

Tempe	rature	Parts per 100	Percent by weight	Pounds per U.S.	Grams
°C	°F	parts water	of saturated solution	gallon of water	liter of water
0	32	1.73	1.71	0.144	17.3
10	50	2.61	2.55	0.218	26.1
15	59	3.17	3.07	0.264	31.7
20	68	3.89	3.74	0.324	38.8
25	77	4.75	4.53	0.375	47.7
30	86	5.90	5.57	0.490	58.7
40	104	9.51	8.69	0.787	94.4
50	122	61.05	13.83	1.322	158.6
60	140	31.76	24.10	2.598	312.3
70	158	39.31	28.22	3.204	384.4
80	176	51.16	33.85	4.145	497.2
100	212	100.6	50.13	8.037	964.2
102.7*	217	113.6	50.17	9.076	1086
* boi	ling point				

Solubility in other Solvents

	°C	°F	weight
Ethylene glycol	25	77	36.58
Diethylene glycol	25	77	14.91
Glycerol, C.P.	25	77	43.58
Glycerol, 99%	20	68	44.97
Ethyl alcohol, 50 Vol%	15.5	59.9	0.29

Percent by

pH in Water @ 20° C (68° F)

Percent by Weight	рН
0.1	9.25
0.5	9.24
1.0	9.24
2.0	9.25
3.0	9.29
3.74 (saturation)	9.30

Angle of Repose, horizontal

33 degrees

Stability

V-BOR° is the most stable of the hydrates of sodium tetraborate; however, at temperatures above $110^{\circ}C$ (230°F), it gradually loses water of crystallization.